show that tanh 2x=cos[ilog(a+ib/a-ib)]

1 Answer | Add Yours

sciencesolve's profile pic

sciencesolve | Teacher | (Level 3) Educator Emeritus

Posted on

You need to notice that the problem provides inconsistent informations since there is no other equation to relates x and `z=a+bi`  or`z=a-bi` , hence, the only thing you can do is to consider `tanh 2x = tanh(x+x)`  such that:

`tanh 2x = (2tanh x)/(1 - tanh^2 x)` 

Substituting `(e^(2x) - 1)/(e^(2x) +1)`  for `tanh 2x`  such that:

`tanh 2x = (2(e^(2x) - 1)/(e^(2x) + 1))/(1 - ((e^(2x) - 1)^2)/((e^(2x) + 1)^2))`  => `tanh 2x = (2(e^(2x) - 1)(e^(2x) +1))/((e^(2x)+1-e^(2x)+1)(e^(2x)+1+e^(2x)-1))`

`tanh2x = 2(e^(4x)-1)/(4e^(2x)) => tanh2x =(e^(4x)-1)/(2e^(2x)) ` 

But `tanh 2x = -i*tan i*(2x)`

`-i*tan i*(2x) =(e^(4x)-1)/(2e^(2x)) `

`-i*(2tan ix)/(1 - tan^2(ix)) = (e^(4x)-1)/(2e^(2x)) ` 

Hence, the only relation you can get, under the given conditions, is `-i*(2tan ix)/(1 - tan^2(ix)) = (e^(4x)-1)/(2e^(2x)).`

We’ve answered 318,912 questions. We can answer yours, too.

Ask a question