A rectangle is formed with a wire that has a length of 20 cm. Let the length of the rectangle be x. The width is (20 - 2x)/2 = 10 - x

The area of the rectangle is A = x*(10 - x) = 10x - x^2

To maximize A,...

## See

This Answer NowStart your **48-hour free trial** to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Already a member? Log in here.

A rectangle is formed with a wire that has a length of 20 cm. Let the length of the rectangle be x. The width is (20 - 2x)/2 = 10 - x

The area of the rectangle is A = x*(10 - x) = 10x - x^2

To maximize A, solve A' = 0

A' = ` `10 - 2x

10 - 2x = 0

=> x = 5

The length of the rectangle is 5 and the width is 5 which gives a maximum area of 25 cm^2.

**This proves that it is not possible to form a rectangle with an area of 30 cm^2 with a wire of length 20 cm.**