Show that a.b = (1/4) |a+b|^2 - (1/4) |a-b|^2
- print Print
- list Cite
Expert Answers
calendarEducator since 2010
write12,551 answers
starTop subjects are Math, Science, and Business
Let us take the two vectors a and b.
Their dot product is |a|*|b|*cos D, where D is the angle between the vectors.
Let the vector a make an angle of A with the horizontal and vector b make an angle of B with the horizontal.
(1/4)*|a + b|^2 - (1/4)*|a - b|^2
=> (1/4)[|a + b|^2 - (1/4)*|a - b|^2]
=> (1/4)[[sqrt((|a|*sin A + |b|*sin B)^2 + (|a|*cos A + |b|*cos B)^2)]^2 - [sqrt((|a|*sin A - |b|*sin B)^2 + (|a|*cos A - |b|*cos B)^2)]^2 ]]
=> (1/4)[[sqrt(|a|^2*(sin A)^2 + |b|^2*(sin B)^2 + 2|a|*|b|*sin A * sin B+ |a|^2*(cos A)^2 + |b|^2*(cos B)^2 + 2|a|*|b|*cos A * cos B]^2 - [sqrt((|a|^2*(sin A)^2 + |b|^2*(sin B)^2 - 2|a|*|b|*sin A * sin B+ |a|^2*(cos A)^2 + |b|^2*(cos B)^2 - 2|a|*|b|*cos A * cosB]^2]
simplify using (cos x)^2 + (sin x)^2 = 1
=> (1/4)[[(|a|^2 + 2|a|*|b|*sin A * sin B + 2|a|*|b|*cos A * cos B] - [(|a|^2 + |b|^2 - 2|a|*|b|*sin A * sin B - 2|a|*|b|*cos A * cos B]]
=> (1/4)[4|a|*|b|*sin A * sin B + 4|a|*|b|*cos A * cos B]
=> [|a|*|b|*sin A * sin B + |a|*|b|*cos A * cos B]
use cos (A - B) = cos A * cos B + sin A * sin B
=> |a|*|b|*cos ( A - B)
=> |a|*|b|*cos D
which is a.b
Therefore we prove that a.b = (1/4)*|a + b|^2 - (1/4)*|a - b|^2
Related Questions
- Using properties of determinant prove that `|[1, a, a^2],[1, b, b^2],[1, c, c^2]| = (a-b)(b-c)(c-a)`
- 1 Educator Answer
- Describe and correct the error`` 2b^2+b=6 b^2+(1/2)b=3 b^2+(1/2)b+(1/2)^2=3+(1/2)^2...
- 1 Educator Answer
- If a^2 - b^2 = 8 and a*b = 2, find a^4 + b^4.
- 2 Educator Answers
- How to show using factorTheorem,show that a-b,b-c and c-a are the factors of...
- 1 Educator Answer
- Prove that log(a) b = 1/(log(b) a)
- 1 Educator Answer