If `int_0^a f(t)dt=a^3` then by derivating `t^3` you get

`f(t)=3t^2`

Then `int_0^(pi/2)f(cos t)sin t dt= int_0^(pi/2)(cos t)^2sin t dt=(1) `

Use substitution `s=cos t` then `ds=-sin t dt` and `s_1= cos 0=1`, `s_2=cos pi/2=0`

`(1)=-int_1^0s^2 ds=1/3`

## Unlock

This Answer NowStart your **48-hour free trial** to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Already a member? Log in here.

If `int_0^a f(t)dt=a^3` then by derivating `t^3` you get

`f(t)=3t^2`

Then `int_0^(pi/2)f(cos t)sin t dt= int_0^(pi/2)(cos t)^2sin t dt=(1) `

Use substitution `s=cos t` then `ds=-sin t dt` and `s_1= cos 0=1`, `s_2=cos pi/2=0`

`(1)=-int_1^0s^2 ds=1/3`

Since `int_0^af(t)dt=a^3` , we want to somehow transform the integral into this form.

`int_0^{pi/2}f(cosx)sinx dx` let `t=cosx` then `dt=-cosxdx` . limits become t=1 and t=0, so the integral is

`=-int_1^0f(t)dt` switch the integral limits

`=int_0^1f(t)dt` now use given information

`=1^3`

`=1`

**The integral evaluates to 1.**