A rectangle field with area of 300 square meters and a perimeter of 80 meters. What are the length and width of the field?
- print Print
- list Cite
Expert Answers
calendarEducator since 2010
write48 answers
starTop subject is Math
Our task is to find out the length and width of the field.
Let the length of the field be L and the width of the field be W
Area of rectangle is given by A=L*B .
Perimeter of rectangle is given by P=2(L+B).
Using information given by the question we have the following 2 equations:
L*B = 300 ......(1)
2(L+B) = 80 ......(2)
Since we have two unknowns and two equations, we can solve the simultaneous...
(The entire section contains 2 answers and 222 words.)
Unlock This Answer Now
Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.
Related Questions
- The area of a rectangular field is equal to 300 square meters. Its perimeter is equal to 70...
- 2 Educator Answers
- A rectangle has an area or 300 square meters and a perimeter of 80 meters. What are the length...
- 1 Educator Answer
- The length of a rectangle is twice its width. If the perimeter is 36 ft find its area.
- 2 Educator Answers
- Find the length and width of a rectangle that has the given perimeter and a maximum area....
- 1 Educator Answer
- The length and width of a rectangle are in the ration 5:3.. perimeter is 32 cm. Find length and...
- 1 Educator Answer
Let L represent length, let W represent Width.
Perimeter is equal to 2L+2W for any rectangle, or P=2L+2W
Area is equal to L*W for any rectangle, or A=L*W
Here, the perimeter is 80 meters and the area is 300m^2. How can we use this information to find out answers? Let's think and figure it out.
L*W=300m^2
2L+2W=80m >>>>>>>> 2(L+W)=80>>>>>>> (L+W)=80/2 =40
L+W=40 then L=40-W OR W=40-L Choose one or the other to use in the equation for area.
A=L*W>>> 300m^2 = L*(40-L)
300m^2=40L-L^2 >>>>>>rewrite>>> L^2-40L+300=0 >>>now solve for L by factoring this equation to get (L-30)(L-10)=0 Therefore L=30 or L = 10. It would make more sense that the length would be the longest dimension so we will say that L=30. Then W would have to be 10. The rectangle is 30m long and 10m wide. Just to be sure, let's multiply L*W to see if we get 300m^2, which we know is the area of this rectangle.
Is 10*30 = 300? Yes, it is. Therefore 10m*30m=300m^2
Now lets check the Perimeter: 80 = 2L+2W OR 80 = 2*30 + 2*10 >>>> 60+20=80 Is that correct? I think it is. Now you have your solution. The length of this rectangle is 30 meters and the width of it is 10 meters. That wasn't too difficult, was it?
Perimeter of arectangle P = 2(l+w), where l = length and w = width of the rectangle.
Given the perimeter of the rectangular field , P = 80 m. So the l = P/2 -w = 80/2 -w.
Therefore the area of the rectanglar field = l*w = (80/2 - w)w . But are is given to be 300 sq m.
So the required equation is :
(80/2-w)w = 300.
(40-w)w = 300.
40w - w^2 = 300.
40w - w^2 -300 = 0
Multiply by (-1) and write as below:
w^2 -40w +300 = 0.
w^2 -30w -10 w +300 = 0.
w(w-30) -10(w-30) = 0.
(w-30) (w-10) = 0.
Therefore w -30 = 0, Or w -10 = 0.
So w-30 = 0 gives w = 30, and w-10 = 0 gives w = 10.
Therefore w = 10 m and l = (80/2 -10) = 30 m
So length = 30 meter and width = 10 m.
Student Answers