The rate constant of a rxn is 1.2×10^3 sec−1 @ 400 C and 2.5×10^5 s−1 @ 410 C.Calculate the energy of activation. Answer in units of kJ/mol
- print Print
- list Cite
Expert Answers
calendarEducator since 2012
write1,275 answers
starTop subjects are Math and Science
To solve for the energy of activation, use the Arrhenius formula which is:
`ln (k_2/k_1)=-E_a/R(1/T_2-1/T_1)`
where `E_a ` - activation energy
`R` - gas constant 8.314 J/(mol K)
`k_1` and `k_2` - rate constant of reaction at `T_1` and `T_2` , respectively and,
`T_1` and `T_2` - temperatures in Kelvin
So, let's express the given temperatures in Kelvin.
`T_1 = 400 + 273.15=673.15` K
`T_2= 410 + 273.15=683.15` K
Substitute `k_1= 1.2 xx 10^3 s(-1)` ,` k_2=2.5xx10^5 s^(-1)` , `T_1=673.15` , `T_2=683.15` and `R=8.314` to the formula.
`ln ((2.5xx10^5)/(1.2xx 10^3)) = -E_a/8.314(1/683.15-1/673.15)`
Isolate `E_a` .
`E_a = -(8.314*ln ((2.5xx10^5)/(1.2xx10^3)))/(1/683.15-1/673.15)`
`E_a = 2041311` `J/(mol)` `= 2041.311` `(kJ)/(mol)`
Hence, the energy of activation is `2041.311` `(kJ)/(mol)` .
Related Questions
Unlock This Answer Now
Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.