What angle θ maximizes the cross-sectional area of the gutter? A rain gutter is made from sheets of metal 9 in. wide. The gutters have a 3-in base and two 3-in sides, folded up to an angle θ.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Top width of gutter = `3+2*3costheta`

Perpendicular distance between to and bottom = `3sintheta`

Cross sectional area (A) of the gutter = `(3+(3+2*3costheta))/2*3sintheta`

When the area is maximum then `(dA)/(d(theta)) = 0`

`A = (3+3+2*3costheta)/2*3sintheta`

`A = 9(1+costheta)*sintheta`

`A = 9(sintheta+costheta*sintheta)`

`A = 9/2(2sintheta+2sintheta*costheta)`

`A =...

Unlock
This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Start your 48-Hour Free Trial

Top width of gutter = `3+2*3costheta`

 

Perpendicular distance between to and bottom = `3sintheta`

 

Cross sectional area (A) of the gutter = `(3+(3+2*3costheta))/2*3sintheta`

 

When the area is maximum then `(dA)/(d(theta)) = 0`

 

`A = (3+3+2*3costheta)/2*3sintheta`

`A = 9(1+costheta)*sintheta`

`A = 9(sintheta+costheta*sintheta)`

`A = 9/2(2sintheta+2sintheta*costheta)`

`A = 9/2(2sintheta+sin(2theta))`

`(dA)/(d(theta)) = 9/2(2costheta+2cos(2theta))`

 

When `(dA)/(d(theta)) = 0`

`9/2(2costheta+2cos(2theta)) = 0`

`cos(2theta)+costheta = 0`

`2cos^2(theta)-1+costheta = 0`

`2cos^2(theta)+2costheta-costheta-1 = 0`

`2costheta(costheta+1)-1(costheta+1) = 0`

`(costheta+1)(2costheta-1) = 0`

`costheta = -1` and `costheta = 1/2`

 

`costheta = -1`

`theta = pi`

This cannot happen because the angle should be less than 90 to form the gutter.

 

`costheta = 1/2`

`costheta = cos(pi/3)`

`theta = pi/3`

 

If area is maximum at `theta = pi/3` then `(d^2A)/(d(theta)^2) <0` at `theta = pi/3`

`(dA)/(d(theta)) = 9/2(2costheta+2cos(2theta))`

`(d^2A)/(d(theta)^2) = 9/2(-2sintheta-4sin(theta))`

`(d^2A)/(d(theta))^2 = -9/2(2sintheta+4sin(theta))`

 

since sin(pi/3)>0 then `(d^2A)/(d(theta)^2)<0`

 

So we have the maximum Area at `theta = pi/3`

 

Approved by eNotes Editorial Team