You need to find the extreme values of `z=f(x,y)= 2x^2-y^2` subject to the constraint`g(x,y)=x+y=2` , hence, you should use the method of Lagrange's multipliers, thus, you should find the values of `x,y,z,lambda` that satisfy the equations x+y-2=0 and `gradf=lambda*grad g.`
`grad f = f_x*i + f_y*j`
`grad f = 4x*i - 2y*j`
`grad g = g_x*i + g_y*j`
`grad g = i + j`
You need to solve the equation `gradf=lambda*grad g` such that:
`4x*i - 2y*j = lambda*i + lambda*j`
You need to compare the components such that:
`4x = lambda`
`-2y = lambda`
`4x = -2y =gt 2x = -y`
You should substitute `2x = -y` in equation g(x,y)=0
`x+y = 2`
`x - 2x = 2 =gt -x = 2 =gt x = -2`
`y = 4`
Hence, the function has an extreme at (-2,4) and the extreme value is f(-2,4)= -8.
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.