Science Questions and Answers

Start Your Free Trial

How would you compare the behavior of the galvanometer pointer when the magnet moves along the coil and when the magnet moves across the coil?

Expert Answers info

Lupe Tanner, Ph.D. eNotes educator | Certified Educator

briefcaseCollege Professor

bookPh.D. from Oregon State University

calendarEducator since 2015

write3,384 answers

starTop subjects are Science, Math, and Business

This question relates to the Faraday's law of induction. It simply states that an electron motive force or emf is generated when the magnetic field across a wire or coil changes. This emf causes a current to flow through the coil, which is detected by the galvanometer. If we move the magnet across the coil, the strength of magnetic field will increase and then decrease. This changing magnetic flux will generate an emf and cause the current flow in the coil. This will cause a deflection in the needle or pointer of the galvanometer. The pointer will first deflect in one direction (as the magnet is approaching the coil) and then fall back to rest position as the magnet moves away from the coil. In comparison, when the magnet moves along the wire, a constant magnetic field is generated and the pointer will stay deflected at a constant value.  

Hope this helps. 

check Approved by eNotes Editorial