Q. A particle of mass 1 unit is moving along the circumference of a circle of radius 3 units with a variable speed `v=6t - t^2.` Find the rate of work done on the body at `t=1.` a) 20 b) 30 c) 36 d) zero

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Only in the uniform circular motion the force is directed towards the center of the circle, and thus is not doing work. If the motion is non uniform there will be two forces acting on the mass. First force is towards the center and its instantaneous value is

`F_n =m*V^2/R`

This normal force is not doing any work (because it is perpendicular to the instant speed).

The second force is tangential to the trajectory and its value is

`F_t = m*a =m*dV/dt =m*(6-2t)`

This force is doing work because is parallel to the speed.

The work done is

`W = F_t(1)*v(1) =1*(6-2)*(6-1) =20J`

Therefore the correct answer is a) 20 J

Approved by eNotes Editorial Team

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial