It is given that `lim_(x->a)g(x) =oo` and `f(x)>= g(x)` . It has to be shown that `lim_(x->a) f(x)` is also equal to `oo` .
If `f(x)>= g(x)` , `f(x) - g(x) >= 0`
Let `lim_(x->a) f(x) = A` and `lim_x(->a) g(x) = B`
Let `epsi = A - B` . `lim_(x->a)(f(x) - g(x)) = A - B` . By the definition of limits for every `epsi > 0` , there exists a `delta > 0` such that for all values of x, `0 < |x - a| < delta => |f(x) - g(x) - A + B| < epsi` .
As `epsi = A - B` ,
`|f(x) - g(x) - A + B| < epsi`
=> `(f(x) - g(x) - A + B) < epsi`
=> `(f(x) - g(x) - A + B) < A - B`
=> `f(x) - g(x) < 2*(A - B)`
But as `f(x) - g(x)` is positive `2*(A - B)` is also positive or `A - B > 0`
=> `A > B`
=> `lim_(x->a) f(x) > lim_x(->a) g(x)`
As `lim_(x->a) g(x) = oo` this is possible only if `lim_(x->a) f(x) = oo`
This proves that if `lim_(x->a)g(x) =oo` and `f(x)>= g(x)` , `lim_(x->a) f(x) = oo`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.
Further Reading