# Prove trigonometric identity: ` cos^4x+sin^2x*cos^2x + sin^2x + tan^2x = 1/(cos^2 x)`

The trigonometric identity `cos^4x+sin^2x*cos^2x + sin^2x + tan^2x = 1/(cos^2 x)` has to be proved.

`cos^4x+sin^2x*cos^2x + sin^2x + tan^2x`

= `cos^4x+sin^2x*cos^2x + sin^2x + (sin^2x)/(cos^2x)`

= `cos^4x+(1 - cos^2x)*cos^2x + 1 - cos^2x + (1 - cos^2x)/(cos^2x)`

= `cos^4x+cos^2x - cos^4x + 1...

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

The trigonometric identity `cos^4x+sin^2x*cos^2x + sin^2x + tan^2x = 1/(cos^2 x)` has to be proved.

`cos^4x+sin^2x*cos^2x + sin^2x + tan^2x`

= `cos^4x+sin^2x*cos^2x + sin^2x + (sin^2x)/(cos^2x)`

= `cos^4x+(1 - cos^2x)*cos^2x + 1 - cos^2x + (1 - cos^2x)/(cos^2x)`

= `cos^4x+cos^2x - cos^4x + 1 - cos^2x + (1 - cos^2x)/(cos^2x)`

= `1 + (1 - cos^2x)/(cos^2x)`

= `(cos^2x)/(cos^2x) + (1 - cos^2x)/(cos^2x)`

` `=> `1/(cos^2x)`

This proves that ` cos^4x+sin^2x*cos^2x + sin^2x + tan^2x = 1/(cos^2 x)`

Approved by eNotes Editorial Team