(a^2 + b^2) (c^2 + d^2) = (ac +- bd)^2 + (ad -+ bc)^2
Let us start from the right side:
(ac + bd)^2 + (ad - bc)^2 = (ac)^2 + 2acbd + (bd)^2 + (ad)^2 - 2abcd + (bc)^2
Let us simplify:
(ax+bd)^2 + (ad-bc)^2 = (ac)^2 + (bd)^2...
See
This Answer NowStart your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.
Already a member? Log in here.
(a^2 + b^2) (c^2 + d^2) = (ac +- bd)^2 + (ad -+ bc)^2
Let us start from the right side:
(ac + bd)^2 + (ad - bc)^2 = (ac)^2 + 2acbd + (bd)^2 + (ad)^2 - 2abcd + (bc)^2
Let us simplify:
(ax+bd)^2 + (ad-bc)^2 = (ac)^2 + (bd)^2 + (ad)^2 + (bc)^2
Let us rearrange terms:
==> (ac+ bd)^2 + (ad-bc)^2= (ac)^2 (bc)^2 + (bd)^2 + (ad)^2
Now we will factor:
= c^2 (a^2+b^2) + d^2(a^2+b^2)
= (a^2+ b^2)(c^2 + d^2)...
==> (ac+bd)^2 + (ad-ac)^2 = (a^2 + b^2 )(c^2 + d^2)
Similarly:
(ac-bd)^2 + (ad+ac)^2 = (a^2 + b^2)((c^2 + d^2)