Prove that tanA + tanB + tanC = tanA tanB tanC for any non-right angle triangle

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We have to prove that tan A + tan B + tan C = tan A*tan B*tan C for any non-right angle triangle.

For any triangle the sum of the angles is equal to 180 degrees. If we take a triangle ABC, A + B + C = 180 degrees.

A + B + C = 180 or A + B = 180 - C

tan (A + B) = tan (180 - C)

=> (tan A + tan B)/(1 - tan A*tan B) = tan C

=> tan A + tan B = tan C - tan A*tan B*tan C

=> tan A + tan B + tan C = tan A*tan B*tan C

This proves that tan A + tan B + tan C = tan A*tan B*tan C

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial