Prove that : (tanA+cotB)(cotA-tanB)=cotAcotB-tanAtanB

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We have to prove that (tan A + cot B)(cot A - tan B) = cot A * cot B - tan A * tan B

(tan A + cot B)(cot A - tan B)

=> tan A * cot A + cot A * cot B - tan A...

See
This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Get 48 Hours Free Access

We have to prove that (tan A + cot B)(cot A - tan B) = cot A * cot B - tan A * tan B

(tan A + cot B)(cot A - tan B)

=> tan A * cot A + cot A * cot B - tan A * tan B - cot B * tan B

tan x = 1/ cot x or cot x * tan x = 1

=> 1 + cot A * cot B - tan A * tan B - 1

=> cot A * cot B - tan A * tan B

This proves that (tan A + cot B)(cot A - tan B) = cot A * cot B - tan A * tan B

Approved by eNotes Editorial Team