Prove that (tan A + tan B)^2 = [((tan(A +B))^2 + (tan A)^2(tan B)^2(tan(A +B))^2 - 2((tan A)(tan B)(tan(A +B))^2)]
- print Print
- list Cite
Expert Answers
calendarEducator since 2010
write12,554 answers
starTop subjects are Math, Science, and Business
We have to prove (tan A + tan B)^2 = [((tan(A +B))^2 + (tan A)^2(tan B)^2(tan(A +B))^2 - 2((tan A)(tan B)(tan(A +B))^2)]
An easy way to do this is to start with tan (A + B) = (tan A + tan B)/(1 - (tan A)(tan B))
=> (1 - (tan A)(tan B))* tan(A +B) = tan A + tan B
=> tan A + tan B = (1 - (tan A)(tan B))* tan(A +B)
square both the sides
=> (tan A + tan B)^2 = [(1 - (tan A)(tan B))]^2* [tan(A +B)]^2
=> (tan A + tan B)^2 = [(1 + (tan A)^2(tan B)^2 - 2((tan A)(tan B))] * [tan(A +B)]^2
=> (tan A + tan B)^2 = [((tan(A +B))^2 + (tan A)^2(tan B)^2(tan(A +B))^2 - 2((tan A)(tan B)(tan(A +B))^2)]
Therefore (tan A + tan B)^2 = [((tan(A +B))^2 + (tan A)^2(tan B)^2(tan(A +B))^2 - 2((tan A)(tan B)(tan(A +B))^2)]
Related Questions
- Prove that `sec^4(x)-tan^4(x)=1+tan^2(x)` .
- 2 Educator Answers
- Prove that (tan x)' = sec^2 x
- 2 Educator Answers
- Prove that log(a) b = 1/(log(b) a)
- 1 Educator Answer
- if A+B+C = 180° prove that : sin²A + sin²B + sin²C = 2 + 2cosA.cosB.sinC
- 1 Educator Answer
- Using properties of determinant prove that `|[1, a, a^2],[1, b, b^2],[1, c, c^2]| = (a-b)(b-c)(c-a)`
- 1 Educator Answer