Prove that the result of differentiating arc tan (1-x^2) + arc cot (1-x^2) is 0.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We have to prove that the derivative of arc tan (1-x^2) + arc cot (1-x^2) is 0.

 

We know that the derivative of arc tan x = 1/[1 + (1-x^2)^2] and the derivative of arc cot x = -1 / [1 + (1-x^2)^2]

Let f(x) = arc tan (1-x^2) + arc cot (1-x^2)

f'(x) = -2x * 1/[1 + (1-x^2)^2] + (-2x)* -1/[1 + (1-x^2)^2]

=> -2x/[1 + (1-x^2)^2] + -(-2x)/[1 + (1-x^2)^2]

=> -2x/[1 + (1-x^2)^2] + 2x/[1 + (1-x^2)^2]

=> 0

The derivative of arc tan (1-x^2) + arc cot (1-x^2) = 0.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team