The value of the function given f(x) = (5^x-5)/(x-1), for x --> 0 can be arrived at by substituting the value of x = 0 in the expression for the function f(x) = (5^x-5)/(x-1)
=> (5^0 - 5)/( 0 - 1)
=> ( 1 - 5) / (0 - 1)
=> +4
The required value of lim x-->0 [ (5^x-5)/(x-1)] = +4 not ln 5.
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.