The value of the function given f(x) = (5^x-5)/(x-1), for x --> 0 can be arrived at by substituting the value of x = 0 in the expression for the function f(x) = (5^x-5)/(x-1)

=> (5^0 - 5)/( 0 - 1)

=> ( 1 - 5) / (0 - 1)

=> +4

**The required value of lim x-->0 [ (5^x-5)/(x-1)] = +4 not ln 5.**

## See eNotes Ad-Free

Start your **48-hour free trial** to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Already a member? Log in here.