Prove that `cos^4A - sin^4A +1 = 2cos^2A`

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`cos^4A-sin^4A+1=2cos^2A`

First, group the first two terms and factor it.

`(cos^4A-sin^4A)+1=2cos^2A`

`(cos^2A-sin^2A)(cos^2A+sin^2A)+1=2cos^2A`

Then, apply the Pythagorean identity which is  `cos^2theta + sin^2theta=1` .

 

`(cos^2A-sin^2A)(1)+1=2cos^2A`

`cos^2A-sin^2A + 1=2cos^2A`

Then, group the second and last term at the left side of the equation.

`cos^2A+(-sin^2A+1)=2cos^2A`

`cos^2A+(1-sin^2A)=2cos^2A`

To simplify the expression inside the parenthesis, apply the Pythagorean identity again.

`cos^2A+cos^2A=2cos^2A`

`2cos^2A=2cos^2A`

Since left side simplifies to `2cos^2A` which is the same term with the right side, hence it proves that the given equation is an identity.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial