Prove that (cA)^-1=(1/c)A^-1 If A is an invertible matrix and c is a nonzero scalar, then cA is an invertible matrix and the above equation is true. Please show step by step how you would prove it.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You should remember that if you need to multiply a matrix with a scalar, you need to multiply each element of the matrix with the scalar, such that:

`A = v*((a,b),(c,d)) => A = ((v*a,v*b),(v*c,v*d))`

Notice that v represents the scalar(number) and A represents the matrix.

You may prove the requested identity evaluating the inverse of the new matrix `v*A` .

You need to remember that you may evaluate the inverse of a matrix only if its determinant is not equal to zero.

Supposing that the...

(The entire section contains 286 words.)

Unlock This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Start your 48-Hour Free Trial
Approved by eNotes Editorial Team