Prove that if (c,f(c)) is a point of inflection of the graph of f and f'' exists in an open interval that contains c, then f''(c)=0 May need to apply first derivative test and Fermat's theorem to the fuction g=f'

Expert Answers

An illustration of the letter 'A' in a speech bubbles

A point of inflection on a graph f(x) is where f''(x) = 0

If c is a point of inflection on the graph f(x) then, as long as f''(x) exists in the region of c then f''(c) = 0.

Fermat's Theorem says that maxima or minima of a function f(x) can be obtained by solving f'(x) = 0 where f'(x) is the gradient function of f(x).

If we differentiate f(x) once to obtain f'(x), we can find the maxima and minima of f(x) by solving f'(x) = 0. In turn, the maxima and minima of f'(x) can be obtained by solving f''(x) = 0.

So a point of inflection is where the gradient function is at a turning point.

Approved by eNotes Editorial Team

Posted on

Soaring plane image

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial