prove that    2 Cos 2^n A + 1   /   2cos A+1 = (2 cos A -1 ) (2cos 2A -1)  (2cos^2A -1)...................(2cos 2 ^2n-1   -   1)from SL loney's trignometry book  pg 97 exercise 17 Q no...

prove that    2 Cos 2^n A + 1   /   2cos A+1 = (2 cos A -1 ) (2cos 2A -1)  (2cos^2A -1)...................(2cos 2 ^2n-1   -   1)

from SL loney's trignometry book  pg 97 exercise 17 Q no :41

1 Answer | Add Yours

Top Answer

giorgiana1976's profile pic

giorgiana1976 | College Teacher | (Level 3) Valedictorian

Posted on

We'll multiply both sides by 2cosA + 1 and we'll get:

2 cos`2^(n)` A + 1 = (2cos A + 1)(2cos A - 1)(2cos 2A - 1)...(2cos `2^(n-1)` A - 1)

We notice that the product of the first two factors fro the right returns the difference of two squares:

(2cos A + 1)(2cos A - 1) = 4`cos^(2)` A - 1 = 2`cos^(2)` A + 2`cos^(2)` A - 1

But 2`cos^(2)` A - 1 = cos 2A

(2cos A + 1)(2cos A - 1) = 2`cos^(2)` A + cos 2A

We'll add and subtract 1 to the right:

(2cos A + 1)(2cos A - 1) = 2`cos^(2)` A - 1 + 1 + cos 2A

(2cos A + 1)(2cos A - 1) = cos 2A + 1 + cos 2A

(2cos A + 1)(2cos A - 1) = 2cos 2A + 1

Therefore, instead of the product (2cos A + 1)(2cos A - 1) , we'll put the result 2cos 2A + 1.

2 cos `2^(n)` A + 1 = (2cos 2A + 1)(2cos 2A - 1)...(2cos`2^(n-1)` A - 1)

We notice that the product of the first two factors fro the right returns the difference of two squares:

(2cos 2A + 1)(2cos 2A - 1) = 4`cos^(2)` 2A - 1 = 2`cos^(2)` 2A + cos 4A

(2cos 2A + 1)(2cos 2A - 1) = 2cos 4A + 1 = 2cos `2^(2)` A + 1

This result will be multiplied by (2cos `2^(2)` A - 1 ):

(2cos `2^(2)` A - 1)(2cos`2^(2)` A + 1) = 2cos`2^(3)` A + 1

Each result will be multiplied by the conjugate factor till we'll reach to the result 2cos`2^(n-1)` A + 1.

(2cos`2^(n-1)` A + 1)(2cos`2^(n-1)` A - 1) = 2cos `2^(n)` A + 1

We notice that the result we've came up to the right side represents the same expression with the one from the left side.

Therefore, the identity is verified!

We’ve answered 318,934 questions. We can answer yours, too.

Ask a question