Here, we use the relations that tan x = sin x / cos x.
sin (a + b) = sin a * cos b + cos a * sin b
cos ( a+ b) = cos a * cos b - sin a * sin b
tan (a + b) = sin (a + b) / cos ( a + b)
=> [sin a * cos b + cos a * sin b] / [cos a * cos b - sin a * sin b]
divide all the terms by cos a * cos b
=>[ (sin a * cos b)/(cos a * cos b)+ (cos a * sin b)/(cos a * cos b)] / [(cos a * cos b)/(cos a * cos b) - (sin a * sin b)/(cos a * cos b)]
=> [(sin a / cos a) + (sin b / cos b)]/[ 1 - (sin a / cos a)*( sin b/ cos b)]
=> (tan a + tan b) / ( 1 - tan a * tan b)
Therefore we have tan (a + b) = (tan a + tan b) / ( 1 - tan a * tan b)
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.