trigonometry math

Start Free Trial

prove  tan(a+b)=(tan a+tanb)/(1-tana*tanb)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Here, we use the relations that tan x = sin x / cos x.

sin (a + b) = sin a * cos b + cos a * sin b

cos ( a+ b) = cos a * cos b - sin a * sin b

tan (a + b) = sin (a + b) / cos ( a + b)

=> [sin a * cos b + cos a * sin b] / [cos a * cos b - sin a * sin b]

divide all the terms by cos a * cos b

=>[ (sin a * cos b)/(cos a * cos b)+ (cos a * sin b)/(cos a * cos b)] / [(cos a * cos b)/(cos a * cos b) - (sin a * sin b)/(cos a * cos b)]

=> [(sin a / cos a) + (sin b / cos b)]/[ 1 - (sin a / cos a)*( sin b/ cos b)]

=> (tan a + tan b) / ( 1 - tan a * tan b)

Therefore we have tan (a + b) = (tan a + tan b) / ( 1 - tan a * tan b)

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team