We have to prove that: sin x /(sec x + tan x - 1) + cos x /(cosec x + cot x - 1) = 1

sin x /(sec x + tan x - 1) + cos x /(cosec x + cot x - 1)

=> sin x /(1/cos x + sin x/cos x - 1) + cos x /(1/sin x + cos x/sin x - 1)

=> sin x /(1/cos x + sin x/cos x - cos x/cos x) + cos x /(1/sin x + cos x/sin x - sin x/sin x)

=> sin x * cos x/(1+ sin x - cos x) + cos x*sin x /(1 + cos x - sin x)

=> sin x * cos x[1/(1+ sin x - cos x) + 1/(1 + cos x - sin x)]

=> sin x * cos x[(1 + cos x - sin x) + (1+ sin x - cos x)/(1 + cos x - sin x)(1+ sin x - cos x)]

=> sin x * cos x[(1 + cos x - sin x + 1+ sin x - cos x)/(1^2 - (sin x+ cos x)^2]

=> sin x * cos x[(1 + 1)/(1 - (sin x)^2 - (cos x)^2 + 2*sin x*cos x]

=> sin x * cos x[2/(1 - 1 + 2*sin x*cos x]

=> sin x * cos x[2/2*sin x*cos x]

=> sin x * cos x/sin x*cos x

=> 1

**This proves that sin x /(sec x + tan x - 1) + cos x /(cosec x + cot x - 1) = 1**

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now