We have to prove that :((sin x + cos x)/(sin x - cos x)) + ((sin x - cosx)/(sin x + cos x)) = (2*sec^2x/tan^2x) - 1
((sin x + cos x)/(sin x - cos x)) + ((sin x - cosx)/(sin x + cos x))
=> ((sin x + cos x)^2 + (sin x - cos x)^2)/(sin x + cos x)(sin x - cos x)
=> ((sin x)^2 + (cos x)^2 + 2*(sin x)(cos x) + (sin x)^2 + (cos x)^2 - 2*(cos x)(sin x))/(sin x + cos x)(sin x - cos x)
=> 2/[(sin x)^2 - (cos x)^2] ...(1)
(2*sec^2x/tan^2x) - 1
=> (2*sec^2x - tan^2x)/tan^2x
=> [(2/(cos x)^2 - (sin x)^2/(cos x)^2)]/[(sin x)^2/(cos x)^2]
=> [2 - (sin x)^2]/(sin x)^2 ...(2)
As we can see (1) is not equal to (2)
The given relation is not an identity.
We’ll help your grades soar
Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.
- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support
Already a member? Log in here.
Are you a teacher? Sign up now