Prove the identity (sinx)^2 - (cosx)^2 = (sinx)^4 - (cosx)^4

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Hello!

First, consider the right part:

`sin^4(x) - cos^4(x)`

and express it as the difference of squares:

`[sin^2(x)]^2 - [cos^2(x)]^2.`

Now use the formula a^2 - b^2 = (a-b)*(a+b) and obtain

`[sin^2(x) - cos^2(x)] *[sin^2(x) + cos^2(x)].`

But the second factor is always 1, and we get

`sin^2(x) - cos^2(x),` which is the left part of the identity. QED.

Approved by eNotes Editorial Team
An illustration of the letter 'A' in a speech bubbles

A simpler way to see what is going on in this equation is to redefine the essential terms. Specifically, let

(sinx)^2 = r

(cosx)^2 = s

The equation can then be written as

r - s = r^2 - s^2

We can then use the method of factorizing the difference of two squares, namely

r^2 - s^2 = (r - s)(r + s)

Note that the 'cross terms' rs and -rs cancel each other out.

Therefore we can now write the equation as

r - s = (r - s)(r + s)

From the (Pythagorean, or, unit circle) trigonometric identity  (sinx)^2 + (cosx)^2 = 1  we have that

r + s = 1

Our equation then can be written as

r - s = (r - s) x 1

that is

r - s = r - s

As this holds as true, we see that the original equation does indeed hold true.

NB If you plot (sinx)^2 + (cosx)^2 on a graph the identity (sinx)^2 + (cosx)^2 = 1 is apparent as the curves are perfectly symmetric in the line y = 1/2

(sinx)^2 - (cosx)^2 = (sinx)^4 - (cosx)^4

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team