We need to prove that :
cosx/ (1-sinc) - sec x = tanx
We will start from the left side and prove the right side.
First, we know that sec x = 1/cosx
==> cosx / (1-sinx) - 1/cosx
==> Now we will rewrite using a common denominator cosx(1-sinx)
==> ( cosx*cosx - (1-sinx) / cosx(1-sinx)
==> (cos^2 x + sinx -1) / cosx(1-sinx)
==> We know that cos^2 x = 1- sin^2 x
==> (1-sin^2 x + sinx -1 ) / cosx(1-sinx)
==> Now we will factor:
==> (1-sinx)(1+sinx) - (1-sinx) / cosx(1-sinx)
We will factor (1-sinx)
==> (1-sinx)[ (1+sinx -1) / cosx(1-sinx)
Now we will reduce 1-sinx
==> sinx/ cosx = tanx...........q.e.d
Then we proved that cosx/ (1-sinx) - sec x = tanx.
We have to prove (cos x / (1 - sin x)) - sec x = tan x
use tan x = sin x / cos x and sec x = 1/ cos x
Start from the right hand side
(cos x / (1 - sin x)) - sec x
=> cos x/ (1 - sin x) - 1/cos x
=> (cos x)^2 - 1 - sin x / (cos x *(1 - sin x))
=> (-(sin x)^2 - sin x)/(cos x *(1 - sin x))
=> (-sin x)( sin x - 1)/(cos x *(1 - sin x))
=> (sin x)( 1 - sin x)/(cos x *(1 - sin x))
=> (sin x)/(cos x)
=> tan x
which is the right hand side.
This proves (cos x / (1 - sin x)) - sec x = tan x
We’ll help your grades soar
Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.
- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support
Already a member? Log in here.
Are you a teacher? Sign up now