The identity `(sin A - cos A) (tan A + cot A) = sec A - cosec A` has to be proved.
`(sin A - cos A) (tan A + cot A)`
=> `(sin A - cos A) (sin A/cos A + cos A/sin A)`
=> `(sin A - cos...
See
This Answer NowStart your subscription to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.
Already a member? Log in here.
The identity `(sin A - cos A) (tan A + cot A) = sec A - cosec A` has to be proved.
`(sin A - cos A) (tan A + cot A)`
=> `(sin A - cos A) (sin A/cos A + cos A/sin A)`
=> `(sin A - cos A) (sin A^2A + cos^2A)/(cos A*sin A)`
=> `(sin A - cos A)/(cos A*sin A)`
=> `1/cos A - 1/sin A`
=> `sec A - cosec A`
This proves that `(sin A - cos A) (tan A + cot A) = sec A - cosec A`