We have to prove that cos 4x - sin 4x * cot 2x = -1
cos 4x - sin 4x * cot 2x = -1
use cos 2x = (cos x)^2 - (sin x)^2 and sin 2x = 2 sin x cos x and cot x = (cos x)/(sin x)
=> (cos 2x)^2 - (sin x)^2 - 2*(sin 2x)*(cos 2x)*(cos 2x)/(sin 2x)
=>(cos 2x)^2 - (sin x)^2 - 2*(cos 2x)*(cos 2x)
=> ( cos 2x)^2 - 2 ( cos 2x)^2 - ( sin 2x)^2
=> - (cos 2x)^2 - (sin 2x)^2
=> -1*[(cos 2x)^2 + (sin 2x)^2]
As (cos x)^2 + (sin x)^2 = 1
=> -1
Therefore we proved that
cos 4x - sin 4x * cot 2x = -1
We’ll help your grades soar
Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.
- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support
Already a member? Log in here.
Are you a teacher? Sign up now