We have to show that cos A + cos B + cos C + cos(A+B+C) = 4*cos(A+B)/2*cos(B+C)/2*cos(C+A)/2
4*[cos(A+B)/2]*[cos(B+C)/2]*[cos(C+A)/2]
use cos x*cos y = (cos(x+y)+cos(x-y))/2
=> 4*[cos(A+B+B+C)/2 + cos(A+B-B-C)/2]/2*cos(C+A)/2
=> 2*[cos(A+2B+C)/2 + cos(A-C)/2]cos(C+A)/2
=> 2*[cos(A+2B+C)/2][cos(C+A)/2]+2*[cos(A-C)/2][cos(C+A)/2]
=> 2*[cos(A+2B+C+C+A)/2 + cos(A+2B+C-C-A)/2]/2 + 2*[cos(A -C+C+A)/2 + cos(A-C-C-A)/2]/2
=> 2*[cos(2A+2B+2C)/2 + cos(2B)/2]/2 + 2*[cos(2A)/2 + cos(-2C)/2]/2
=> cos(A+B+C) + cos(B) + cos(A) + cos(-C)
use the relation cos x = cos(-x)
=> cos A + cos B + cos C + cos (A + B + C)
This proves that cos A + cos B + cos C + cos(A+B+C) = 4*cos(A+B)/2*cos(B+C)/2*cos(C+A)/2
We’ll help your grades soar
Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.
- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support
Already a member? Log in here.
Are you a teacher? Sign up now