Evaluate the expression `2/pi int_0^pi e^(-t/2)cos2nt dt`   How does this relate to `2/pi int_0^pi e^(-t/2)sin2nt dt` ?    

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Using Euler's formula

`cos2nt + isin2nt = e^(i2nt)`

 

Therefore

`int_0^pi e^(-t/2)(cos2nt + isin2nt) dt = int_0^pi e^((i2n-1/2)t) dt`

`= (e^((i2n-1/2)t))/((i2n-1/2))|_0^(pi) = ((e^(-pi/2)-1))/((i2n-1/2))`

Now, using integration by parts and letting `u=sin2nt` and `v=-2e^(-t/2)`

`int_0^pi e^(-t/2)sin2nt dt = -2e^(-t/2)sin2nt |_0^pi + int_0^pi 4n e^(-t/2)cos2nt dt`

Let `int_0^pi e^(-t/2)cos2nt dt = I` `implies`` int_0^pi e^(-t/2)sin2ntdt = 4nI`

We also have that `int_0^pi e^(-t/2)(cos2nt+isin2nt) = ((e^(-pi/2)-1))/((i2n-1/2))``= I + i4nI`

Therefore `I = ((e^(-pi/2)-1))/((i2n-1/2)(1+i4n)) = (2(1-e^(-pi/2)))/((1-i4n)(1+i4n)) = (2(1-e^(-pi/2)))/((1+16n^2))`

and `4nI = (8n(1-e^(-pi/2)))/((1+16n^2))`

Thus `2/piint_0^pi e^(-t/2)cos2nt dt = (4/pi)((1-e^(-pi/2)))/((1+16n^2)) = 0.504(2/((1+16n^2)))`

and `2/pi int_0^pi e^(-t/2)sin2nt dt = 0.504((8n)/((1+16n^2)))` answer


Approved by eNotes Editorial Team
An illustration of the letter 'A' in a speech bubbles

You should use the formula of integration by parts such that:

`int udv = uv - int vdu`

`u = cos(2nt) => du = -2n*sin(2nt)`

`dv = e^(-t/2)dt => v = int e^(-t/2) dt `

Selecting -`t/2 = x => -dt/2 = dx => dt = -2dx`

`int e^(t/2)dt = int e^x*(-2dx) `

`int e^x*(-2dx) = -2e^x`

Substituting back -`t/2`  for x yields:

`int e^(t/2)dt = -2e^(-t/2) => v = -2e^(-t/2) `

You may evaluate the definite integral `int_0^pi e^(-t/2)*cos(2nt)dt`  such that:

`int_0^pi e^(-t/2)*cos(2nt)dt = -2cos(2nt)*e^(-t/2)|_0^pi - int_0^pi (-2e^(-t/2))(-2n*sin(2nt)) dt`

`int_0^pi e^(-t/2)*cos(2nt)dt = -2cos(2nt)*e^(-t/2)|_0^pi - 4n int_0^pi (e^(-t/2))(sin(2nt)) dt`

You need to use again integration by parts to evaluate `int_0^pi (e^(-t/2))(sin(2nt)) dt`  such that:

`u = sin(2nt) => du = 2n*cos(2nt)`

`dv = e^(-t/2)dt => v = -2e^(-t/2) `

`int_0^pi (e^(-t/2))(sin(2nt)) = -2e^(-t/2)sin(2nt)|_0^pi+ 4n int_0^pi e^(-t/2) cos(2nt) dt`

You should come up with the following notation for `int_0^pi e^(-t/2)*cos(2nt)dt`  such that:

`int_0^pi e^(-t/2)*cos(2nt)dt = I`

`I= -2cos(2nt)*e^(-t/2)|_0^pi - 4n(-2e^(-t/2)sin(2nt)|_0^pi + 4nI)`

`I+ 16n^2I = -2cos(2nt)*e^(-t/2)|_0^(pi) + 8 n e^(-t/2)sin(2nt)|_0^pi`

Factoring out I to the left side yields:

`I(1 + 16n^2) = -2cos(2npi)*e^(-pi/2) + 2cos(2n0)*e^(-0/2) + 8 n e^(-pi/2)sin(2npi) - 8 n e^(-0/2)sin(2n*0)`

`I(1 + 16n^2) = -2e^(-pi/2) + 2 + 0 - 0`

`I = 2(1 - e^(-pi/2))/(1 + 16n^2) `

Multiplying by `2/pi ` yields:

`2/pi*I = (4/pi)(1 - e^(-pi/2))/(1 + 16n^2)` 

Hence, evaluating the integral `2/pi*int_0^pi e^(-t/2)*cos(2nt)dt`  yields `2/pi*int_0^pi e^(-t/2)*cos(2nt)dt = (4/pi)(1 - e^(-pi/2))/(1 + 16n^2).`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team