The product of two numbers is 24 find the numbers if one number is two more than twice the other.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Let the numbers be A and B.

The product of the two numbers is 24

=> A*B = 24

One number is 2 more than twice the other

=> A = 2 + 2*B

substitute this in A*B = 24

=> (2 + 2*B)*B = 24

=> 2B + 2B^2 = 24

=> B^2 + B - 12 = 0

=> B^2 + 4B - 3B - 12 = 0

=> B(B + 4) - 3(B + 4) = 0

=> (B - 3)(B + 4) = 0

=> B = 3 and B = 4

A = 8 and A = 6

The numbers are (3, 8) and (4, 6)

Approved by eNotes Editorial Team
An illustration of the letter 'A' in a speech bubbles

Let the numbers be x and y

Given that the product is 24.

==> x*y = 24.............(1)

Now we know that one number is 2 more than twice the other number.

==> x = 2y+ 2 ..............(2)

We will substitute (2) into (1).

==> (2y+2)*y = 24

==> 2y^2 + 2y = 24

We will divide by 2.

==> y^2 + y= 12

==> y^2 +y - 12 = 0

==> (y+4)(y-3) = 0

==> y1= -4  ==>  x1= 2*-4+2 = -6

==> y2= 3  ==> x2= 2*3+2 = 8

Then we have two sets of solution.

==> The numbers are 3 and 8   OR   -4 and -6.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team