Problem 66 the volume v (in cubic meters) of the hot-air ballon described in problem 65 is given by v(r)=4/3 pi r3.  If the radius r is the same function of t as in problem 65 find the volume as a function of the time t. Problem 65 Surface Area of a Balloon The surface area S (in square meters) of a hot-air balloon is given by where r is the radius of the balloon (in meters). If the radius r is increasing with time t (in seconds) according to the formula find the surface area S of the balloon as a function of the time t.  Just need answer to problem#66.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Some of the question is missing, so I hope I answer the right question.   We are using the chain rule.


`(dS(r))/(dt)=4pi(2r)(dr)/(dt) = 8pir(dr)/(dt)`

And the answer to your question is

`(dV(r))/(dt)=4/3 pi (3r^2) (dr)/(dt) = 4pir^2(dr)/(dt)`

Approved by eNotes Editorial Team

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial