The velocity is the derivative of the position with respect to time. The acceleration is the derivative of the velocity with respect to time. In finding each of the derivatives, it is necessary to use the chain rule, however, it is a relatively simple version in this case.

For velocity:

...

## Unlock

This Answer NowStart your **48-hour free trial** to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Already a member? Log in here.

The velocity is the derivative of the position with respect to time. The acceleration is the derivative of the velocity with respect to time. In finding each of the derivatives, it is necessary to use the chain rule, however, it is a relatively simple version in this case.

For velocity:

`v=d/{dt}sqrt{1+4t}`

`=1/2(1+4t)^{-1/2}(4)` where the 4 is from the derivative of 1+4t

`=2/sqrt{1+4t}`

Now substitute with t=6 to get:

`v(6)=2/sqrt{1+24}=2/5` m/s

The acceleration is:

`a=d/{dt}2(1+4t)^{-1/2}`

`=-2/2(1+4t)^{-3/2}(4)`

`=-4/(1+4t)^{3/2}`

And again sub in t=6 to get:

`a(6)=-4/(1+24)^{3/2}`

`=-4/5^3`

`=-4/125` m/s^2

**The velocity is `2/5` m/s and the acceleration is `-4/125` m/s^2.**