Please. Help me to prove this:   ctgA*ctgB+ctgA*ctgC+ctgB*ctgC=1

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to consider that A,B,C are angles in triangle ABC, hence `A+B+C=pi =gt A+B = pi-C` .

Hence `ctg(A+B) = ctg(pi - C)`

`(ctgA*ctgB - 1)/(ctgA + ctgB) = 1/tan(pi-C)`

`(ctgA*ctgB - 1)/(ctgA + ctgB) = (1 + tanpi*tanC)/(tan pi - tanC)`

`(ctgA*ctgB - 1)/(ctgA + ctgB) = 1/(-tan C)`

`(ctgA*ctgB - 1)/(ctgA + ctgB) = - ctg C`

`(ctgA*ctgB - 1) = -ctg C(ctgA + ctgB)`

You need to opent the brackets such that:

`ctgA*ctgB - 1= -ctgA*ctgC - ctgC*ctgB`

You need to move the terms containing cotangent function to the left side such that:

`ctgA*ctgB + ctgA*ctgC + ctgB*ctgC - 1=0`

`ctgA*ctgB + ctgA*ctgC + ctgB*ctgC = 1`

Hence, the last line proves the identity `ctgA*ctgB + ctgA*ctgC + ctgB*ctgC = 1.`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team