Find the rate at which the distance between the plane and the station is increasing when the plane is 3 km away from the station. A plane flying horizontally at an altitude of 2 km and a speed of 800 km/h passes directly over a radar station. (We are looking at the instant when the direct “air” distance between the plane and the station is 3 km.)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The plane flying horizontally at an altitude of 2 km at a speed of 800 km/h passes over a radar station. After a time t, the distance between the plane and the radar station is `D = sqrt(2^2 + (800*t)^2)` = `sqrt(4 + 640000*t^2)`

The rate at which D is changing with time is `(dD)/(dt) = (1/2)*1280000*t*(1/sqrt(4 + 640000*t^2))`

=> `640000*t/sqrt(4 + 640000*t^2)`

If D = 3, `sqrt(4 + 640000*t^2) = 3`

=> `4 + 640000*t^2 = 9`

=> `640000*t^2 = 5`

=> `t = sqrt 5/800`

At `t = sqrt 5/800` , `(dD)/(dt) = (640000*(sqrt 5/800))/(sqrt(4 + (640000*5/640000)))`

=> `(dD)/(dt) = (800*(sqrt 5))/(sqrt9)`

=> `800*sqrt 5/3`

The rate at which the distance of the plane from the radar station is increasing is `(800*sqrt5)/3`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team