A perfectly competitive firm sells a product at $10 per unit. For an output of X, with total costs are TC = 15 + .4X + .1X^2. How many units should they produce to maximize profit?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The total cost of producing X units of a product by a perfectly competitive firm is given by the expression TC = 15 + 0.4*X + 0.1*X^2. The market price of each product is $10. If X units of the product are sold, the revenue is 10*X.

The profit earned by the firm when X units are sold is given by P = 10X - 15 - 0.4X - 0.1X^2. To maximize the profit the number of units that should by produced is equal to the solution of the equation P' = 0 where P' is the first derivative of P with respect to X.

P' = 10 - 0.4 - 0.2*X

10 - 0.4 - 0.2*X = 0

=> X = 48

The firm should produce 48 units to maximize the profit made. The maximum profit it can earn is $215.4

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team