The pentagon is to be constructed by placing an equilateral triangle on a rectangle and the dimensions of the two determined to maximize the area of the pentagon. Let the rectangle have the dimensions L x W and the equilateral triangle is placed on the side with length L.
As the perimeter is 30: `3*L + 2*W = 30`
The area of the pentagon is A = `L*W + (sqrt 3/4)*L^2`
=> `L*(30 - 3L)/2 + (sqrt 3/4)*L^2`
=> `15L - 3L^2/2 + (sqrt 3/4)*L^2`
=> `15L + (sqrt 3/4 - 3/2)*L^2`
To maximize the area solve `(dA)/(dL) = 0`
=> `15 + 2*L*(sqrt 3/4 - 3/2) = 0`
=> `L = -15/(sqrt 3/2 - 3)`
=> `L = 15/(3 - sqrt 3/2)`
=> `L = 30/(6 - sqrt 3)`
The width of the rectangle is `W = (30 - 3*30/(6 - sqrt 3))/2`
=> W = `15 - 45/(6 - sqrt 3)`
To maximize the area of the pentagon the dimensions of the rectangle are `30/(6 - sqrt 3)` x `15 - 45/(6 - sqrt 3)` and the equilateral triangle has sides equal to `30/(6 - sqrt 3)`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.