PART 1

Prove that (1+cos 2x+sin 2x)/(1-cos 2x+sin 2x)= cot x.

PART 2

Hence, solve the equation 1+sin 2x=3 cos 2x for 0<x<360 for which cos 2x not equal zero.

ANSWER PART 2

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You should use the following trigonometric identities to solve the equation `1 + sin 2x = 3 cos 2x`  such that:

sin 2x = (2 tan ((2x)/2))/(1 + tan^2((2x)/2))

`sin 2x = (2 tan x)/(1 + tan^2 x)`

`cos2x = (1- tan^2 x)/(1 + tan^2 x)`

`1 + (2 tan x)/(1 + tan^2 x) = 3(1 - tan^2 x)/(1 + tan^2 x)`

Moving the terms to one side yields:

`1 + (2 tan x)/(1 + tan^2 x)- 3(1 - tan^2 x)/(1 + tan^2 x) = 0`

Bringing the terms to a common denominator yields:

`(1 + tan^2 x + 2tan x - 3 + 3tan^2 x)/(1 + tan^2 x) = 0`

Since `1 + tan^2 x != 0` , hence `4tan^2 x + 2tan x - 2 = 0`  such that:

`4tan^2 x + 2tan x - 2 = 0 => 2tan^2 x + tan x - 1 = 0`

You should come up with the following substitution such that:

`tan x = t`

`2t^2 + t - 1 = 0`

Using quadratic formula yields:

`t_(1,2) = (-1 +- sqrt(1 + 8))/2 => t_(1,2) = (-1 +- 3)/2`

`t_1 = 1 ; t_2 = -2`

You need to solve the equations `tan x = t_1`  and `tan x = t_2`  such that:

`tan x = 1 => x = pi/4 and x = pi + pi/4 => x = 5pi/4`

`tan x = -2 => x = arctan(-2) => x = -arctan 2`

Hence, evaluating the solutions to the equation yields `x = pi/4, x = 5pi/4`  and `x = -arctan 2` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial