s = (1/2)(((Log(H/1-H))-log(F/1-F)) Compute H and F In a psychophysical experiment designed to measure performance in a recognitiontask, a subject is presented with a set of pictures of people’s faces. Later, thesubject is presented with a second set of pictures which contains the previouslyshown pictures and some new ones. The subject then is asked to answer “yes” or“no” to the question “Do you recognize this face?” We would like to determinea measure of the observer’s ability to discriminate between the previously shownpictures and the new ones.If a subject correctly recognizes a face as being one of the previously shownones, it is called a “hit.” If a subject incorrectly states that they recognize a face,when the face is actually a new one, it is called a “false alarm.” The proportionof responses to previously shown faces which are hits is denoted by H, while theproportion of responses to new faces which are false alarms is denoted by F.A measure of the ability of the subject to discriminate between previously shownfaces and new ones is given by all are in log base 10 s = (1/2)(((Log(H/1-H))-log(F/1-F)) 1. Suppose that the subject responds “yes” to 20 and “no” to 5 of the previouslyshown pictures, while the subject gives 10 “yes” and 15 “no” responses to the newpictures.
- print Print
- list Cite
Expert Answers
calendarEducator since 2012
write511 answers
starTop subjects are Math, Science, and Business
The quantity s is a log odds ratio. It tells us about the subject's ability to discriminate between faces they know and faces they don't.
`H` is the proportion of hits out of the group of faces they have seen. They have seen 20 + 5 faces = 25 so` `
`H = 20/25 = 4/5`
`F` is the proportion of faces they think they know out of of the group they haven't seen; the proportion of false positives. They have seen 10 + 15 = 25 faces they don't know so
`F = 10/25 = 2/5`
We can compute `s` from this and test whether `s` is significantly different from 1/2 (there is no difference between their recognition of faces they should know and faces they haven't seen before) by computing the standard error of `s` and checking that the lower limit of the confidence interval is greater than 1/2.
We have H = 4/5 and F=2/5
Related Questions
- s = (1/2)(((Log(H/1-H))-log(F/1-F)) Compute s for the pair (H, F) for thepairs (H, F) = (0.80,...
- 1 Educator Answer
- Compute s for the pairs (H,F) = (0.80, 0.20), (H,F) = (0.8, 0.6) and (H,F) = (0.80, 0.90).In a...
- 1 Educator Answer
- Prove that log(a) b = 1/(log(b) a)
- 1 Educator Answer
- Suppose that (H,F) = (0.6, 0.2). If F is unchanged, what would H have to beto double ? If H is...
- 1 Educator Answer
- If f(x) = 3x^2 - x + 2, find f(2), f(-2), f(a), f(-a), f(a+1), 2*f(a), f(2a), f(a^2), (f(a))^2...
- 1 Educator Answer