The parachutist is descending at a constant rate of 4.8 ft/s. When the parachutist is at a height of 40/6 ft above the ground an object is thrown from a height of 15 feet towards the parachutist. The height of the object is given by ho = -16t^2 + 40t...

## See

This Answer NowStart your **48-hour free trial** to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Already a member? Log in here.

The parachutist is descending at a constant rate of 4.8 ft/s. When the parachutist is at a height of 40/6 ft above the ground an object is thrown from a height of 15 feet towards the parachutist. The height of the object is given by ho = -16t^2 + 40t + 15 where t is the time after the object is thrown. The function that gives the height of the parachutist a duration of time t after the object is thrown towards him is given by hp = 40/6 - 4.8*t

When the object is caught by the parachutist the height ho and hp should the same.

This gives: -16t^2 + 40t + 15 = 40/6 - 4.8*t

=> -48t^2 + 120t + 45 = 20 - 14.4*t

=> 48t^2 - 134.4*t - 25 = 0

Solving the equation gives the positive root t = `(sqrt(8931)+84)/60`

**The time t derived is that at which both the object and the parachutist at the same height.**