*A normal random variable `x` has an unknown mean `mu` , and a standard deviation `sigma=2` . If the probability that `x` exceeds 7.5 is 0.8023, find the mean `mu` .*

(1) Recall that we convert the value of a random variable to a `z` score by the formula `z=(x-mu)/sigma` .

(2) If the probability that `x` exceeds 7.5 is 0.8023, then the probability that `x` is less than 7.5 is 0.1977; we can get the corresponding `z` score for .1977 from a table or utility to be `z~~-.8499` .

(3) Substitute the known quantities and solve for `mu` :

`-.8499 = (7.5-mu)/2` or `mu~~9.1997`

**Thus we can say that the mean is approximately 9.2**

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now