`ln x-ln(x-5)=4`

Now we use the following property of logarithms:

`log_b x-log_b y=log_b x/y`

Hence, we get

`ln(x/(x-5))=4`

`x/(x-5)=e^4`

`x=e^4x-5e^4`

`x-e^4x=-5e^4`

`x(1-e^4)=-5e^4`

`x=-(5e^4)/(1-e^4)` ** <-- Your solution**

`ln x-ln(x-5)=4`

Now we use the following property of logarithms:

`log_b x-log_b y=log_b x/y`

Hence, we get

`ln(x/(x-5))=4`

`x/(x-5)=e^4`

`x=e^4x-5e^4`

`x-e^4x=-5e^4`

`x(1-e^4)=-5e^4`

`x=-(5e^4)/(1-e^4)` ** <-- Your solution**