(1) You will need to plot the points

(2) Assuming that the highest value given is the maximum and the lowest value given is the minimum:

(a) The amplitude is `A=("highest"-"lowest")/2=(55-5)/2=25` This is the maximal distance of a point from the midline.

(b) The vertical translation is 30. The midline for the sine function is y=0. Here the function goes from y=5 to y=55, so the midline is `y=(55+5)/2=30` (the average of the extreme values.)

(c) The graph appears to be a cosine graph. To write as a sine function note that we must shift one fourth of the period to the left.

The period is the time to complete one full cycle -- it takes 7 seconds to get from highest to lowest, so the period is 14 seconds.

The phase shift (horizontal translation of the graph) is `14/4=3.5`

(3) h(t)=asin[b(t-c)]+d -- a is the amplitude; the period is found by `p=(2pi)/b` so `b=(2pi)/p=(2pi)/14=pi/7` ; c is the horizontal translation (phase shift) so c=-3.5 (moving to the left); and d is the vertical translation so d=30.

The function is `h(t)=25sin[pi/7(t+3.5)]+30`

(4) The amplitude is `a=("highest"-"lowest")/2`

(5) The rest position of the pendulum would be the lowest height possible so h=5m

(6) The maximum displacement is 55m-5m=50m

(7) The period is 14sec. 15 cycles takes 210 seconds or 3.5 minutes.

The graph:

** My calculator gives `y~~25.072sin(.459x+1.52)+29.949` using a regression for sine.

## See eNotes Ad-Free

Start your **48-hour free trial** to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Already a member? Log in here.