Match the following differential equation with its solution: 2x^2y" + 3xy' = y 1. y = x^(1/2) 2. y = e^(-4x) 3. y = sin(x) 4. y = 3x + x^(2)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

To match the differential equation with its answer, we need to take each of the functions, differentiate twice and combine to see if the left side of the differential equation matches with the right side.

(1)

`y=x^{1/2}`

` ` `y'=1/2x^{-1/2}`

`y''=-1/4x^{-3/2}`

`LS=-1/2x^{1/2}+3/2x^{1/2}=x^{1/2}=RS`

This is a solution.

(2)

`y=e^{-4x}`

`y'=-4e^{-4x}`

`y''=16e^{-4x}`

...

Unlock
This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Start your 48-Hour Free Trial

To match the differential equation with its answer, we need to take each of the functions, differentiate twice and combine to see if the left side of the differential equation matches with the right side.

(1)

`y=x^{1/2}`

` ` `y'=1/2x^{-1/2}`

`y''=-1/4x^{-3/2}`

`LS=-1/2x^{1/2}+3/2x^{1/2}=x^{1/2}=RS`

This is a solution.

(2)

`y=e^{-4x}`

`y'=-4e^{-4x}`

`y''=16e^{-4x}`

`LS=32x^2e^{-4x}-12xe^{-4x}=4x(8x-3)e^{-4x} ne RS`

This is not a solution

(3)

`y=sin x`

`y'=cos x`

`y''=-sin x`

`LS=-2x^2 sinx+3x cos x ne RS`

This is not a solution

(4)

`y=3x+x^2`

`y'=3+2x`

`y''=2`

`LS=4x^2+9x+6x^2=10x^2+9x ne RS`

The function (1) is a solution to the differential equation.

Approved by eNotes Editorial Team