Match each of the following differential equation with its solution: xy'-y = x^2     1. y = x^(1/2)   2. y = e^(-4x)   3. y = sin(x) 4. y = 3x + x^(2)

1 Answer | Add Yours

jeew-m's profile pic

jeew-m | College Teacher | (Level 1) Educator Emeritus

Posted on

`y = x^(1/2)`

`y' = 1/(2sqrtx)`

 

`xy'-y`

`= x*1/(2sqrtx)-x^(1/2)`

`= [x-2(sqrtx)^2]/(2sqrtx)`

`= -x/(2sqrtx)`

`= -sqrtx/2`

 

 

`y = e^(-4x)`

`y' = -4e^(-4x)`

 

`xy'-y`

`= x(-4e^(-4x))-e^(-4x)`

`= e^(-4x)(-4x-1)`

`= -e^(-4x)(4x+1)`

 

 

`y = sin(x)`

`y' = cosx`

 

`xy'-y`

`= xcosx-sinx`

 

 

`y = 3x + x^(2)`

`y' = 3+2x`

 

`xy'-y`

`= x(3+2x)-(3x + x^(2))`

`= 3x+2x^2-3x-x^2`

`= x^2`

 

So the answer is `y = 3x + x^(2)` or the answer is (4)

Sources:

We’ve answered 318,991 questions. We can answer yours, too.

Ask a question