Let A be the current position,B the point on the shore 3km from A, C the point to land at, and D the destination.

Let BC=d.

Then AB=3,BC=d,AC=`sqrt(d^2+9)` , CD=5-d.(All distances in km)

We want to minimize the time. The total time is the sum of the time rowing plus...

## See

This Answer NowStart your **48-hour free trial** to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Already a member? Log in here.

Let A be the current position,B the point on the shore 3km from A, C the point to land at, and D the destination.

Let BC=d.

Then AB=3,BC=d,AC=`sqrt(d^2+9)` , CD=5-d.(All distances in km)

We want to minimize the time. The total time is the sum of the time rowing plus the time walking. Using unit analysis, we see that `hr=(hr)/(km)*km=(km)/((km)/(hr))` . Thus:

`t=(sqrt(d^2+9)km)/(2 (km)/(hr))+((5-d)km)/(4(km)/(hr))`

`t=(sqrt(d^2+9))/2+(5-d)/4`

`t=1/2(d^2+9)^(1/2)+1/4(5-d)`

In order to minimize this function, we take the derivative and set it equal to zero.

`(dt)/(dd)=1/4(d^2+9)^(-1/2)(2d)-1/4`

`=(2d)/(4sqrt(d^2+9))-1/4`

Setting this equal to zero we get:

`(2d)/(4sqrt(d^2+9))=1/4`

`2d=sqrt(d^2+9)`

`4d^2=d^2+9`

`3d^2=9`

`d^2=3`

`d=sqrt(3)~~1.73`

**Thus you want to land 1.73km from B or 3.27km from D(the destination)**