# log x+log(x-48)=2

*print*Print*list*Cite

### 2 Answers

Use the property: loga + logb = log(a*b).

So, we will have:

`log(x*(x-48)) = 2`

Use Distributive Property.

`log(x^2 - 48x) = 2`

Writing this in exponential form we will have:

`10^2 = x^2 - 48x`

`100 = x^2 - 48x`

Use Completing the Square.

Take the half of the coefficient of "x", then square the result.

-48/2 = (-24)^2 = 576.

Add 576 to both sides.

`x^2 - 48x + 576 = 100 + 576`

`x^2 - 48x + 576 = 676`

Factor the left side.

`(x - 24)^2 = 676`

Take the square root of both sides.

`x - 24 = +-26`

Solve for x on each case.

`x - 24 = 26 ; x - 24 = - 26`

Add 24 on both sides.

`x = 50 ; x = -2`

We cannot have an answer which is negative, because of the logx.

Hence, **final answer here is x = 50.**

`logx+log(x-48)=2`

`logx(x-48)=2`

`x(x-48)=100`

`x^2-48x-100=0`

`x^2-48x+576-100=576`

`x^2-48x+576=676`

`(x-24)^2=676`

`x-24=+-26`

`x=24+-26`

`x_1=50` `x_2=-2`

`x_2=-2 ` notaccetable for function not defined in.