The logarithm with the base 10 is usually denoted as log.

log3 = .4771

The number 0.0003 can be written as `3*10^(-4)` , which is a product. The product rule for logarithms states

`log_b xy=log_b x + log_b y`

Thus, log(.0003) can be rewritten as `log(.0003) = log(3*10^(-4)) = log3...

## Unlock

This Answer NowStart your **48-hour free trial** to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Already a member? Log in here.

The logarithm with the base 10 is usually denoted as log.

log3 = .4771

The number 0.0003 can be written as `3*10^(-4)` , which is a product. The product rule for logarithms states

`log_b xy=log_b x + log_b y`

Thus, log(.0003) can be rewritten as `log(.0003) = log(3*10^(-4)) = log3 + log(10^(-4))`

Log3 is given and `log(10^(-4)) = -4` from the definition of a logarithm.

**Therefore log(.0003) = .4771 - 4 = -3.5229**