`ln2/sqrt(2)+ln3/sqrt(3)+ln4/sqrt(4)+ln5/sqrt(5)+ln6/sqrt(6)+...` Confirm that the Integral Test can be applied to the series. Then use the Integral Test to determine the convergence or divergence of the series.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

For the series: `ln(2)/sqrt(2) + ln(3)/sqrt(3)+ ln(4)/sqrt(4)+ ln(5)/sqrt(5)+ ln(6)/sqrt(6) +...`, it follows the formula `sum_(n=2)^oo ln(n)/sqrt(n)` where `a_n = ln(n)/sqrt(n)` . To confirm if the Integral test will be applicable, we let `f(x) = ln(x)/sqrt(x)` .

Graph of the function `f(x)` :


Maximize view: 

As shown on the graphs, `f` is positive and continuous on the finite interval `[1,oo)` . To verify if the function will eventually decreases on the given interval, we may consider derivative of the function.

Apply Quotient rule for derivative: `d/dx(u/v) = (u'* v- v'*u)/v^2` .

Let `u = ln(x)` then `u' = 1/x`

      `v = sqrt(x)` or `x^(1/2)` then `v' = 1/(2sqrt(x))`

Applying the Quotient rule, we get:

`f'(x) = (1/x*sqrt(x)-1/(2sqrt(x))*ln(x))/(sqrt(x))^2`

           `= (1/sqrt(x) - ln(x)/(2sqrt(x)))/x`

           `= ((2-ln(x))/sqrt(x))/x`

          ` =((2-ln(x))/sqrt(x))* 1/x`

          `=(2-ln(x))/(xsqrt(x)) `

 or `(2-ln(x))/x^(3/2)`

Note that `2-ln(x) lt0` for higher values of x which means ` f'(x) lt0`.

Aside from this, we may verify by solving critical values of x .

Apply First derivative test: f'(c) =0 such that x =c as critical values.



`ln(x) =2`

`x = e^2`


Using `f'(7) ~~0.0015` , it satisfy `f'(x) gt0` therefore the function is increasing on the left side of `x=e^2` .

Using `f'(8) ~~-0.0018` , it satisfy `f'(x) lt0 ` therefore the function is decreasing on the right side of `x=e^2` .

Then, we may conclude that the function  `f(x)` is decreasing for an interval `[8,oo)` .

This confirms that the function is ultimately positive, continuous, and decreasing for an interval `[8,oo)`  . Therefore, we may apply the Integral test. 

Note: Integral test is applicable if f is positive, continuous , and decreasing function on interval `[k, oo)` and `a_n=f(x)` . Then the series `sum_(n=k)^oo a_n ` converges if and only if the improper integral `int_k^oo f(x) dx` converges. If the integral diverges then the series also diverges.

To determine the convergence or divergence of the given series, we may apply improper integral as:

`int_8^oo ln(x)/sqrt(x)dx = lim_(t-gtoo)int_8^tln(x)/sqrt(x)dx`

                                  or `lim_(t-gtoo)int_8^tln(x)/x^(1/2)dx`

 To determine the indefinite integral of `int_8^tln(x)/x^(1/2)dx` , we may apply integration by parts: `int u dv = uv - int v du`

`u = ln(x)` then `du = 1/x dx` . 

`dv = 1/x^(1/2) dx` then `v= int 1/x^(1/2)dx = 2sqrt(x)`

Note: To determine v, apply Power rule for integration `int x^n dx = x^(n+1)/(n+1).`

`int 1/x^(1/2)dx =int x^(-1/2)dx`

                ` =x^(-1/2+1)/(-1/2+1)`



                `=2x^(1/2)` or `2 sqrt(x)`

The integral becomes: 

`int_8^t ln(x)/sqrt(x) dx=ln(x) * 2 sqrt(x) - int 2sqrt(x) *1/x dx`

                    `=2sqrt(x)ln(x) - int 2x^(1/2) *x^(-1) dx`

                    `=2sqrt(x)ln(x) - int 2x^(-1/2) dx`

                   `=2sqrt(x)ln(x) - 2int x^(-1/2) dx`

                   `= [ 2sqrt(x)ln(x)- 2(2sqrt(x))]|_8^t`

                    `= [2sqrt(x)ln(x) - 4sqrt(x)]|_8^t`

Apply definite integral formula: `F(x)|_a^b = F(b) - F(a)` .

`[2sqrt(x)ln(x) - 4sqrt(x)]|_8^t =[2sqrt(t)ln(t) - 4sqrt(t)] - [2sqrt(8)ln(8) - 4sqrt(8)]`

                                        ` =2sqrt(t)ln(t) - 4sqrt(t) - 2sqrt(8)ln(8) + 4sqrt(8)`

                                        ` =2sqrt(t)ln(t) - 4sqrt(t) - 4sqrt(2)ln(8) + 8sqrt(2)`

Note: `sqrt(8) = 2sqrt(2)`

Applying `int_8^t ln(x)/sqrt(x) dx=2sqrt(t)ln(t) - 4sqrt(t) - 4sqrt(2)ln(8) + 8sqrt(2)` , we get:

`lim_(t-gtoo)int_2^tln(x)/sqrt(x)dx =lim_(t-gtoo) [2sqrt(t)ln(t) - 4sqrt(t) - 4sqrt(2)ln(8) + 8sqrt(2)]`

         `=lim_(t-gtoo) 2sqrt(t)ln(t) - lim_(t-gtoo)4sqrt(t) - lim_(t-gtoo)4sqrt(2)ln(8) + lim_(t-gtoo) 8sqrt(2)`

         ` = oo-oo -4sqrt(2)ln(8) +8sqrt(2)`


The `lim_(t-gtoo)int_8^tln(x)/sqrt(x)dx=oo`  implies that the integral diverges.


The integral `int_8^ooln(x)/sqrt(x)dx` is divergent therefore the series`sum_(n=2)^ooln(n)/sqrt(n)` must also be divergent

Approved by eNotes Editorial Team